
Brian Ward Ceebot 1 : Introduction to Ceebot

CO452 Programming Concepts

Week 6 - Parameters

Brian Ward Ceebot 1 : Introduction to Ceebot

Recap of the last week

Last week we looked at:

• User-defined functions
• Program design
• Scope of variables

Brian Ward Ceebot 1 : Introduction to Ceebot

Aims and Objectives

Aim: to expand on functions and explore passing
data between them to aid efficiency and data
control

Learning outcomes:
• To know how to pass and return data between

functions
• Create efficient solutions to problems in Ceebot

Brian Ward Ceebot 1 : Introduction to Ceebot

This week

Continuing with functions:

• Passing parameters by-value with our functions
• Returning values
• Formal and actual parameters

Brian Ward Ceebot 1 : Introduction to CeebotSlide 5

User-defined
functions

Designing your own functions

Brian Ward Ceebot 1 : Introduction to Ceebot

Our functions

Slide 6

extern void object::task18_3(){
functionName(); //call function

}
void object::functionName(){

message(“Hello World”);

}

Brian Ward Ceebot 1 : Introduction to CeebotSlide 7

Passing
parameters

by-value
Customising functions

Brian Ward Ceebot 1 : Introduction to Ceebot

An example we’re familiar with

Slide 8

function name Parameter

Brian Ward Ceebot 1 : Introduction to Ceebot

Passing strings

Slide 9

extern void object::task18_3(){
string message = “Hello World”;
outputString(message); //call

}

void object::outputString(string text){
message(text);

}

Brian Ward Ceebot 1 : Introduction to Ceebot

Passing integers

Slide 10

extern void object::task18_3(){
int num = 10;
doubleNum(num); //call

}

void object::doubleNum(int num){
message(num * 2);

}

Brian Ward Ceebot 1 : Introduction to CeebotSlide 11

Reminder
about local
variables

Brian Ward Ceebot 1 : Introduction to Ceebot

How many variables?

Slide 12

extern void object::task18_3(){
int num = 10;
doubleNum(num); //call

}

void object::doubleNum(int num){
message(num * 2);

}

Brian Ward Ceebot 1 : Introduction to CeebotSlide 13

Using parameters
in our own
functions

Making them more flexible

Brian Ward Ceebot 1 : Introduction to CeebotSlide 14

A better DrawCircle()
function

Brian Ward Ceebot 1 : Introduction to CeebotSlide 15

red();
drawCircle(0.2);
move(5);
blue();
drawCircle(0.4);

Using new drawCircle()

{

}

DrawUsingParameters()

void object:: drawCircle (float step)
{

}

pendown();
for (int i = 0; i < 36; i++)
{

move(step) ;
turn(10) ;

}
penup();

step takes the value
0.2 then 0.4

This main program calls drawCircle()
twice with 2 different parameters

Brian Ward Ceebot 1 : Introduction to Ceebot

Activity

Attempt exercise 1 in the study pack (Task 20.1)

Brian Ward Ceebot 1 : Introduction to Ceebot

Activity

Attempt exercise 2 in the study pack (Task 20.3)

Brian Ward Ceebot 1 : Introduction to CeebotSlide 18

Returning
values

Passing control back

Brian Ward Ceebot 1 : Introduction to CeebotSlide 19

Remember these?

input = dialog (“enter num”) ;
dialog(…)

choice = strupper (input);
strupper(…)

item = radar (TargetBot) ;

radar(…)

value returned value returned

value returned

Brian Ward Ceebot 1 : Introduction to Ceebot

Returning integers

Slide 20

extern void object::task18_3(){
int num1 = 10, num2 = 20, total = 0;
total = addNum(num1, num2);
message(total);

}
int object::addNum(int num1, int num2){

int total = num1 + num2;
return total;

}

Brian Ward Ceebot 1 : Introduction to Ceebot

Returning data

Slide 21

The return type that the function is declared
with has to match the type of data that is
being returned.

Brian Ward Ceebot 1 : Introduction to CeebotSlide 22

New Average Program
mainProgram2()

{

}

float num1, num2, avg;

float object::calcAverage(float a, float b)
{

}

float result = (a + b) / 2;
return result;

num1 = getNum ("Enter first number");

avg = calcAverage(num1, num2);
num2 = getNum ("Enter second number");

message (num1 + " and " + num2 + " average is " + avg);

float object::getNum(string prompt)
{

}

float number = strval(dialog(prompt)) ;
return number;

Could actually return
the calculation

without storing in a
variable

Could actually return
the calculation

without storing in a
variable

Brian Ward Ceebot 1 : Introduction to CeebotSlide 23

Actual and Formal
parameters

What’s the difference?

Brian Ward Ceebot 1 : Introduction to CeebotSlide 24

red();
drawCircle(0.2);
move(5);
blue();
drawCircle(0.4);

Actual & Formal Parameters

{

}

Actual&FormalParameters()

void object:: drawCircle (float step)
{

}

pendown();
for (int i = 0; i < 36; i++)
{

move(step) ;
turn(10) ;

}
penup();

0.2 and 0.4 are actual
parameters

Brian Ward Ceebot 1 : Introduction to Ceebot

Activity

Attempt exercise 3 in the study pack (Task 20.7)

Brian Ward Ceebot 1 : Introduction to CeebotSlide 26

Alternating paths

Brian Ward Ceebot 1 : Introduction to CeebotSlide 27

Alternate Colours?

Brian Ward Ceebot 1 : Introduction to CeebotSlide 28

Defining a setColour(…)
function

void object:: setColour ()
{

}

int rem;
rem = loopNum % 2;

int loopNum)

Modulo arithmetic
% divides (by 2) and
leaves the remainder

Modulo arithmetic
% divides (by 2) and
leaves the remainder

// set a different colour
// depending on the parameter passed in

if (rem == 0)
{

red();
}
else if (rem == 1)
{

blue();
}

If you divide by 2
the only possible

remainders are 0 and 1

If you divide by 2
the only possible

remainders are 0 and 1

Brian Ward Ceebot 1 : Introduction to CeebotSlide 29

Using setColour()

{

}

Draw6()

for (int i=0; i<6; i++)
{

}

red();
float size=0.2;

size = size + 0.1; // increase circle size
drawCircle(); size // pass size as a parameter
setColour(); i // pass loop counter i

void object:: setColour ()
{

int rem;
rem = loopNum % 2;

// set a different colour
// depending on the parameter passed in

if (rem == 0)

int loopNum)

Brian Ward Ceebot 1 : Introduction to CeebotSlide 30

Activity
Use the space in Task 18.3 to replicate the picture

below:

Brian Ward Ceebot 1 : Introduction to Ceebot Slide 31

Challenge

How can we make the
circles concentric?

How can we make the
circles concentric?

Brian Ward Ceebot 1 : Introduction to Ceebot

Quiz

Can a void return type be used when
returning a value?

Brian Ward Ceebot 1 : Introduction to Ceebot

Quiz

What does passing parameters
by-value mean?

Brian Ward Ceebot 1 : Introduction to Ceebot

Recap

This week we looked at:

• Passing parameters by-value with our functions
• Returning values
• Formal and actual parameters

Brian Ward Ceebot 1 : Introduction to Ceebot Slide 35

Brian Ward Ceebot 1 : Introduction to CeebotSlide 36

Why use
functions?

Brian Ward Ceebot 1 : Introduction to CeebotSlide 37

Why use functions?
• Large programs can be broken up into smaller sections
• Programs are then easier to understand
• It is easier to modify programs
• It is easier to locate errors
• division of work among programming teams is easier
• functions can be re-used in other programs
• saves duplicating code (write once .. use many times)
• creates better program structure
• makes programs more:

readable
maintainable
reliable
and less complex

Brian Ward Ceebot 1 : Introduction to CeebotSlide 38

Local Variables
• These are declared inside a function

-- and can only be used in that function
-- they are not recognised outside the function

• Local variables are created when the function is
called

-- and destroyed when the function finishes

• They help to make functions more independent
-- so they can be used in other programs without
messing them up

• We say that the scope of the variable is the
function in which it is declared

Brian Ward Ceebot 1 : Introduction to CeebotSlide 39

Why use
parameters?

Brian Ward Ceebot 1 : Introduction to CeebotSlide 40

Why use parameters?

• Functions are much more
powerful and versatile

• Functions can more easily be
re-used in other programs

